Local Environmental Factors Drive Divergent Grassland Soil Bacterial Communities in the Western Swiss Alps.
نویسندگان
چکیده
Mountain ecosystems are characterized by a diverse range of climatic and topographic conditions over short distances and are known to shelter a high biodiversity. Despite important progress, still little is known on bacterial diversity in mountain areas. Here, we investigated soil bacterial biogeography at more than 100 sampling sites randomly stratified across a 700-km2 area with 2,200-m elevation gradient in the western Swiss Alps. Bacterial grassland communities were highly diverse, with 12,741 total operational taxonomic units (OTUs) across 100 sites and an average of 2,918 OTUs per site. Bacterial community structure was correlated with local climatic, topographic, and soil physicochemical parameters with high statistical significance. We found pH (correlated with % CaO and % mineral carbon), hydrogen index (correlated with bulk gravimetric water content), and annual average number of frost days during the growing season to be among the groups of the most important environmental drivers of bacterial community structure. In contrast, bacterial community structure was only weakly stratified as a function of elevation. Contrasting patterns were discovered for individual bacterial taxa. Acidobacteria responded both positively and negatively to pH extremes. Various families within the Bacteroidetes responded to available phosphorus levels. Different verrucomicrobial groups responded to electrical conductivity, total organic carbon, water content, and mineral carbon contents. Alpine grassland bacterial communities are thus highly diverse, which is likely due to the large variety of different environmental conditions. These results shed new light on the biodiversity of mountain ecosystems, which were already identified as potentially fragile to anthropogenic influences and climate change. IMPORTANCE This article addresses the question of how microbial communities in alpine regions are dependent on local climatic and soil physicochemical variables. We benefit from a unique 700-km2 study region in the western Swiss Alps region, which has been exhaustively studied for macro-organismal and fungal ecology, and for topoclimatic modeling of future ecological trends, but without taking into account soil bacterial diversity. Here, we present an in-depth biogeographical characterization of the bacterial community diversity in this alpine region across 100 randomly stratified sites, using 56 environmental variables. Our exhaustive sampling ensured the detection of ecological trends with high statistical robustness. Our data both confirm previously observed general trends and show many new detailed trends for a wide range of bacterial taxonomic groups and environmental parameters.
منابع مشابه
Differential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil.
Grassland management regimens influence the structure of archaeal communities in upland pasture soils, which appear to be dominated by as yet uncultivated non-thermophilic Crenarchaeota. In an attempt to determine which grassland management factors select for particular crenarchaeal community structures, soil microcosm experiments were performed examining the effect of increased pH, application...
متن کاملSoil Properties and Spatial Processes Influence Bacterial Metacommunities within a Grassland Restoration Experiment
Metacommunity theory proposes that a collection of local communities are linked by dispersal and the resulting compositions are a product of both niche-based (species sorting) and spatial processes. Determining which of these factors is most important in different habitats can provide insight into the regulation of community assembly. To date, the metacommunity organization of heterotrophic soi...
متن کاملLinks between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques.
Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed "bulk" rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study w...
متن کاملContrasting microbial biogeographical patterns between anthropogenic subalpine grasslands and natural alpine grasslands.
The effect of plant species composition on soil microbial communities was studied at the multiregional level. We compared the soil microbial communities of alpine natural grasslands dominated by Carex curvula and anthropogenic subalpine pastures dominated by Nardus stricta. We conducted paired sampling across the Carpathians and the Alps and used Illumina sequencing to reveal the molecular dive...
متن کاملEffects of Fertilization and Sampling Time on Composition and Diversity of Entire and Active Bacterial Communities in German Grassland Soils.
Soil bacteria are major players in driving and regulating ecosystem processes. Thus, the identification of factors shaping the diversity and structure of these communities is crucial for understanding bacterial-mediated processes such as nutrient transformation and cycling. As most studies only target the entire soil bacterial community, the response of active community members to environmental...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 82 21 شماره
صفحات -
تاریخ انتشار 2016